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A two-dimensional monatomic lattice with nearest-neighbor interaction is investigated by the
method of multiple scales combined with a quasidiscreteness approximation. The Davey-Stewartson
II equation (DS-II) is obtained from the original two-dimensional (2D) differential-difference system.
By solving the DS-II, explicit periodic solutions, soliton solutions and rational function solutions are
obtained, and the leading order approximated solutions of the 2D monatomic lattice are constructed
by explicit solutions of the DS-II.
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1. Introduction

In recent decades there has been a great develop-
ment in soliton formation and its application in one-
dimensional (1D) systems. The observation of soliton
modes in energy propagating along a biological mole-
cule chain has attracted more and more interest. New
achievements in studying topological solitons in poly-
acetylene chains and the phenomena of transforma-
tion with the action of an electric field have been ob-
tained [1]. The electric field soliton [2], optical soli-
ton [3], breather [4], and so on are interesting prob-
lems. Since the pioneering work of Fermi, Pasta, and
Ulam [5] and of Zabusky and Kruskal [6] on nonlin-
ear dynamics in a lattice, a great variety of researches
on the dynamical localization in discrete systems has
been stimulated, especially on one-dimensional lat-
tice solitons, which are localized nonlinear excitations
due to the balance between nonlinearity and disper-
sion [7]. The method of multiple scales is an effec-
tive method, and by use of it one can reduce the lattice
system, which is a set of differential-difference equa-
tions and can hardly be solved exactly, to a set of par-
tial differential equations for a slowly changing enve-
lope from which one can get explicit solutions, such
as a nonlinear Schrödinger (NLS) equation [8] and a
Korteweg-de Vries (KdV) equation [9]. Basing on 1D
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Fig. 1. 2D monatomic lattice.

nonlinear effects, people have also made many investi-
gations on soliton equations of two-dimensional (2D)
systems [10 – 15].

The present paper is devoted to investigate the equa-
tions of nonlinear vibration in a two-dimensional dis-
crete monatomic lattice with nearest-neighbor interac-
tion, which is shown in Fig. 1, where a and b are lattice
constants. When higher power terms with weak non-
linear interaction are neglected, the Hamiltonian of the
system is
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H = ∑
l,m

[
p2

l,m

2M
+

1
2

K2x(ul+1,m −ul,m)2 +
1
3

K3x(ul+1,m −un,m)3 +
1
4

K4x(ul+1,m −ul,m)4

]

+ ∑
l,m

[
1
2

K2y(ul,m+1 −ul,m)2 +
1
3

K3y(ul,m+1 −ul,m)3 +
1
4

K4y(ul,m+1 −ul,m)4
]
,

(1)

where ul,m(t) is the displacement of an atom with
mass M from its equilibrium position, and K2x, K3x, K4x

and K2y, K3y, K4y are harmonic, cubic, and biquadratic
force constants in the x- and y-direction, respec-
tively. By using the method of multiple scales [8, 16 –
19] combined with a quasidiscreteness approxima-
tion [20], the Davey-Stewartson II equation (DS-II) is
obtained from the original 2D lattice. The explicit solu-
tions of the DS-II are given, and then the leading order
approximated solutions are constructed by the explicit
solutions of DS-II.

The organization of the paper is as follows. In Sec-
tion 2, the (2+1)-dimensional DS-II is derived from the
original 2D monatomic lattice. Section 3 is devoted to
solve the DS-II and obtain the explicit solutions which
are used to construct the leading order approximated
solutions of the original 2D lattice. The last section
contains a short conclusion.

2. Asymptotic Expansion and the (2+1)-Dimen-
sional Davey-Stewartson II Equation

According to (1), the nonlinear vibration equation
for ul,m has the form

ul,m = J2x(ul+1,m −2ul,m + ul−1,m)

+ J3x[(ul+1,m −ul,m)2 − (ul−1,m−ul,m)2]

+ J4x[(ul+1,m −ul,m)3 +(ul−1,m−ul,m)3]

+ J2y(ul,m+1 −2ul,m + ul,m−1)

+ J3y[(ul,m+1 −ul,m)2 − (ul,m−1−ul,m)2]

+ J4y[(ul,m+1 −ul,m)3 +(ul,m−1−ul,m)3],

(2)

where J2x = K2x
M , J3x = K3x

M , J4x = K4x
M and J2y = K2y

M ,

J3y = K3y
M , J4y = K4y

M . In order to include the effects
of the anharmonicity and discreteness of the lattice,
we use the method of multiple scales [8, 16 – 19] and
a quasidiscreteness approximation [20] to obtain the
equations which describe the development of the mod-
ulation of the amplitude in the lowest order of an as-
ymptotic expansion. In this treatment one sets

ul,m(t) = εu(1)(ξl ,ηm,θl,τ)+ ε2u(2)(ξl,ηm,θl ,τ)

+ ε3u(3)(ξl ,ηm,θl,τ)+ . . .

=
∞

∑
j=1

ε ju( j)
l,m,l,

(3)

where ε is a small but finite parameter denoting

the relative amplitude of the excitations and u ( j)
l,m,l =

u( j)(ξl ,ηm,θl,τ), ξl , ηm and τ are “slow” variables, re-
spectively, defined by ξl = ε(la−λ t), ηm = εmb and
τ = ε2t. They are called multiple scales variables. The
parameter λ is to be determined later. The “fast” vari-
able, θl = kla −ωt, represents the phase of the car-
rier wave. Here k and ω are the wave number and fre-
quency of the carrier wave, respectively. In term of
these notations, by substituting (3) into (2) and com-
paring the powers of ε , one obtains the following equa-
tions:

∂2

∂t2 u( j)
l,m,l − J2x

(
u( j)

l,m,l+1 −2u( j)
l,m,l + u( j)

l,m,l−1

)
= f ( j)

l,m,l , j = 1,2,3, . . .

(4)

with

f (1)
l,m,l = 0, (5)

f (2)
l,m,l = 2λ

∂2

∂t∂ξl
u(1)

l,m,l + J2xa
∂

∂ξl

(
u(1)

l,m,l+1 −u(1)
l,m,l−1

)
+ J3x

[(
u(1)

l,m,l+1 −u(1)
l,m,l

)2 −
(

u(1)
l,m,l−1 −u(1)

l,m,l

)2
]
, (6)

f (3)
l,m,l = 2λ

∂2

∂t∂ξl
u(2)

l,m,l + J2xa
∂

∂ξl

(
u(2)

l,m,l+1 −u(2)
l,m,l−1

)
+ 2aJ3x

∂u(1)
l,m,l+1

∂ξl

(
u(1)

l,m,l+1 −u(1)
l,m,l

)

+ 2aJ3x
∂

∂ξl
u(1)

l,m,l−1

(
u(1)

l,m,l−1 −u(1)
l,m,l

)
−2

∂2

∂t∂τ
u(1)

l,m,l −λ 2 ∂2

∂ξ 2
l

u(1)
l,m,l +

1
2

J2xa2 ∂2

∂ξ 2
l

(
u(1)

l,m,l+1 + u(1)
l,m,l−1

)
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+ J2ya2 ∂2

∂η2
m

u(1)
l,m,l + 2J3x

[
u(2)

l,m,l−1

(
u(1)

l,m,l −u(1)
l,m,l−1

)
+ u(2)

l,m,l

(
u(1)

l,m,l−1 −u(1)
l,m,l+1

)

+ u(2)
l,m,l+1

(
u(1)

l,m,l−1 −u(1)
l,m,l+1

)]
+ J4x

(
u(1)

l,m,l+1 −2u(1)
l,m,l + u(1)

l,m,l−1

)[
u(1)

l,m,l+1

(
u(1)

l,m,l+1 −u(1)
l,m,l

)
+ u(1)

l,m,l

(
u(1)

l,m,l −u(1)
l,m,l−1

)
+ u(1)

l,m,l−1

(
u(1)

l,m,l−1 −u(1)
l,m,l+1

)]
,

. . . . . . . . . . . . . . .

(7)

In order to derive the above equations, the Taylor
expansion has been used:

ul±1,m(t) =
∞

∑
j=1

ε ju j(ξl ± εa,ηm,θl±1,τ)

=
∞

∑
j=1

ε j
∞

∑
s=0

1
s!

[
±aε

∂
∂ξl

]s

u( j)
l,m,l±1,

(8)

ul,m±1(t) =
∞

∑
j=1

ε ju j(ξl,ηm ± εb,θl,τ)

=
∞

∑
j=1

ε j
∞

∑
s=0

1
s!

[
±bε

∂
∂ηm

]s

u( j)
l,m,l,

(9)

where u( j)
l,m,l±1 = u( j)

l,m,l±1(ξl,ηm,θl±1,τ), u( j)
l,m,l =

u( j)
l,m,l(ξl ,ηm,θl ,τ). We have omitted the arguments for

convenience. Here, in the continuum approximation
the lattice constants a, b and the parameter ε are all
small quantities (in Section 3, when giving the graph-
ical representations of some solutions obtained, we
have taken the lattice constant as 0.01 for good pre-
cision), and the higher order dispersive terms are ne-
glected in the calculations.

In the lowest order of ε ( j = 1) we can get the fol-
lowing linear wave equation:

∂2

∂t2 u(1)
l,m,l −J2x

(
u(1)

l,m,l+1 −2u(1)
l,m,l + u(1)

l,m,l−1

)
= 0. (10)

We can verify that the solution of (10) has the form

u(1)
l,m,l = U(ξl,ηm,τ)+ P(ξl,ηm,τ)exp(iθl)

+ P̄(ξl ,ηm,τ)exp(−iθl),
(11)

with

ω(k) = 2
√

J2x sin
ka
2

, (12)

where U and P are the real and complex functions, re-
spectively, to be determined later, and P̄ is its conjugate
complex number.

When j = 2 in (4), the second-order approximation
equation is

∂2

∂t2 u(2)
l,m,l − J2x

(
u(2)

l,m,l+1 −2u(2)
l,m,l + u(2)

l,m,l−1

)

= −2iω
(

λ − aJ2x

ω
sin(ka)

)
∂P
∂ξl

exp(iθl)

−8iJ3x sin(ka)sin2
(

ka
2

)
P2 exp(2iθl)+ c.c.,

(13)

where c.c. represents complex conjugate terms. In or-
der to eliminate the secular term, we have

λ =
aJ2x

ω
sin(ka). (14)

Then we can get the valid solution of (13) as follows:

u(2)
l,m,l = G0(ξl,ηm,τ)+ G(ξl,ηm,τ)exp(iθl)+ i

J3x

J2x
ctg

(
ka
2

)
P2 exp(2iθl)+ c.c., (15)

where G0 and G are, respectively, real and complex functions to be determined in higher-order approximations.
Considering j = 3 in (4) and using the results obtained in (11), (12), (14) and (15), we can have

∂2

∂t2 u(3)
l,m,l − J2x

(
u(3)

l,m,l+1 −2u(3)
l,m,l + u(3)

l,m,l−1

)
= (J2xa2 −λ 2)

∂2U

∂ξ 2
l

+ b2J2y
∂2U
∂η2

m
+ 8aJ3x sin2 ka

2
∂|P|2
∂ξl

+

[
2iω

∂P
∂τ

− a2ω2

4
∂2P

∂ξ 2
l

+ b2J2y
∂2P
∂η2

m
−2

J3x

J2x
aω2P

∂U
∂ξl

−
(

8
J2

3x

J2x
sin2(ka)+ 48J4x sin4 ka

2

)
|P|2P

]
exp(iθl)

+ c.c. + higher harmonics.

(16)
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From (16) we find that there are two kinds of secu-
lar terms. The first ones are functions of the slow vari-
ables and make that u(3)

l,m,l contains t explicitly. Remov-
ing these and the exp(iθl) secular terms, we obtain the
two following equations concerning the envelope func-
tions U and P:

∂2U

∂ξ 2
l

+ κ
∂2U
∂η2

m
+ µ

∂|P|2
∂ξl

= 0,

i
∂P
∂τ

+ γ
∂2P

∂ξ 2
l

−κγ
∂2P
∂η2

m
+ ρP

∂U
∂ξl

+ β |P|2P = 0,

(17)

with

κ =
b2J2y

a2J2x
csc2 ka

2
, µ =

8J3x

aJ2x
,

γ = −a2ω
8

, ρ = −aJ3xω
J2x

,

β = −4ωJ2
3x

J2
2x

cos2 ka
2
− 6ωJ4x

J2x
sin2 ka

2
,

µ > 0, κ > 0, γ,ρ ,β < 0.

(18)

Using the transformation P =
√

−4
β

A
ε , ∂U

∂ξl
= −2Q

ρε2 , x =
ξl

ε
√−2γ , y = ηm

ε
√−2κγ , (17) can be transformed into

Qxx + Qyy + 4|A|2xx = 0,

iAt − 1
2
(Axx −Ayy)−2AQ−4|A|2A = 0

with µρ = 2β .

(19)

We can find that (19) is just the DS-II [21 – 23]. It is rel-
evant in many different physical contexts and describes
slow modulation effects of a complex amplitude A, due
to a small nonlinearity, on a monochromatic wave in a
dispersive medium. It turns out to be integrable via the
inverse spectral method [24 – 25]. Several direct meth-
ods to obtain special solutions of DS-II have been con-
structed, such as Darboux transformations [26], gauge
transformations [27], ∂̄ dressing method [28], Wron-
skian scheme [29 – 30].

3. Periodic Solution, Soliton Solution and Rational
Function Solution

This section is devoted to solve the Davey-
Stewartson II equation, and then the leading order ap-
proximated solutions of the 2D monatomic lattice are
got by explicit solutions of the DS-II.

Fig. 2. Plot of solution (21) with k1 = l1, b2 = f = 0.

3.1. Periodic Solutions

It can be easily verified that (19) has periodic solu-
tions of the form

Q = b0 + b1 sin(k1x+ l1y+ O1t)
+ b2 sin(2k1x+ 2l1y+ 2O1t)
+ b3 cos(2k1x+ 2l1y+ 2O1t),

A = exp(i(k0x+ l0y+ O0t))
· [c+ d sin(k1x+ l1y+ O1t)

+ f cos(k1x+ l1y+ O1t)] ,

(20)

where the coefficients satisfy b1 = −4cd, b0 = b2 =

f = 0, b3 = d2, k1 =±l1, O0 = k2
0d−4d3−8dc2−l2

0 d
2d , O1 =

±k0l1− l0l1, or b0 = b1 = c = 0, b2 =−2 f d, b3 = d2−
f 2, k1 = ±l1, O0 = k2

0d+2d(d2− f 2)−6d3−2d f 2−l2
0 d

2d , O1 =
±k0l1 − l0l1.

So, in the leading order approximation we can
obtain the following periodic solution of the 2D
monatomic lattice:

u(t) =
√−2γ

ρk1
[2b1 cos(k1x+ l1y+ O1t)

+ b2 cos(2k1x+ 2l1y+ 2O1t)
−b3 sin(2k1x+ 2l1y+ 2O1t)]

+
{√−4

β
[c+ d sin(k1x+ l1y+ O1t)

+ f cos(k1x+ l1y+ O1t)]

· exp(i(k0x+ l0y+ O0t + θl))+ c.c.

}
.

(21)

Figures 2 and 3 are the plots of the solution (21)
at t = 2 with b2 = f = 0, a = 0.01, k = 10π

3 , J2x = 36,
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Fig. 3. Plot of solution (21) with k1 = −l1, b2 = f = 0.

J3x = 9, c = 1, d = 1.5, k0 = 0.8, l0 = 1, k1 = ±l1 =
±1.2. Figures 4 and 5 are the plots of the solution (21)
at t = 2 with b1 = c = 0, a = 0.01, k = 10π

3 , J2x = 36,
J3x = 9, f = 1.5, d = 1.5, k0 = 0.8, l0 = 1, k1 = ±l1 =
±1.2.

3.2. Soliton Solutions

We find that (19) has the soliton solution

Q = a0 + a1 tanh(k1x+ l1y+ O1t)

+ a2 tanh(k1x+ l1y+ O1t)2,

A = exp(i(k0x+ l0y+ O0t))

· [b0 + b1 tanh(k1x+ l1y+ O1t)],

(22)

with a0 = 2b2
1 −4b0b1, a1 = −4b0b1, a2 =−2b2

1, k1 =

±l1, O0 = 8b0b−4(b2
0+b2

1)+
k2

0−l2
0

2 , O1 =±k0l1− l0l1.
So, in the leading order approximation we obtain the

displacement of the 2D monatomic lattice as follows:

u(t) =
−2

√−2γ
ρk1

·
[

a1In(exp(k1x+ l1y+ O1t)2 + 1)

+
2a2

exp(k1x+ l1y+ O1t)2 + 1

]

+
[√−4

β
[b0 + b1 tanh(k1x+ l1y+ O1t)]

· exp(i(k0x+ l0y+ O0t + θl))+c.c.

]
.

(23)

Figure 6 is the plot of Q at t = 2 with

k0 = 8, l0 = −9, k1 = l1 = −10,

b0 = 1, b1 = 2,

Fig. 4. Plot of solution (21) with k1 = l1, b1 = c = 0.

Fig. 5. Plot of solution (21) with k1 = −l1, b1 = c = 0.

Fig. 6. Plot of Q (22) with a0 = 0, a1 = a2 = −8, k1 = l1 =
−10,O1 = −170.

from which we find that it is a kink grey soliton.
Figure 7 is the plot of the solution (23) at t = 2 with

a = 0.01, k =
10π

3
, J2x = 36, J3x = −9,

k0 = 8, l0 = 9, k1 = l1 = −10,

b0 = 1, b1 = 2.

3.3. Rational Solutions

We now consider rational solutions of (19). Before
solving them, we make the transformation: Q = Vxx,
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Fig. 7. Plot of solution (23) with k1 = l1.

z = x+ iy, z̄ = x− iy. Then (19) can be changed into

the form

Vzz̄ + |A|2 = 0,

iAt − (Azz + Az̄z̄)−2A(Vzz +Vz̄z̄) = 0.
(24)

According to [29] and [30], the solution of the
DS-II (24) can be expressed as follows:

A =
det

(
w(1) w(2)

¯̂w(2) ¯̂w(1)

)

det

(
w(1) w(2)

w̄(2) w̄(1)

) ,

V = ln

(
det

(
w(1) w(2)

w̄(2) w̄(1)

))
,

(25)

where w(i) (i = 1,2) are n × n Wronskian matrices.
ŵ(1) and ŵ(2) are also n× n matrices; the ¯ represents
conjugating every ingredient of the corresponding ma-
trix, and the forms of the matrices w(1), w(2), ŵ(1) and
ŵ(2) are

w(1) =




σ (1)
1 · · · σ (1)

n

∂σ (1)
1 · · · ∂σ (1)

n
...

...

∂n−1σ (1)
1 · · · ∂n−1σ (1)

n


, w(2) =




σ (2)
1 · · · σ (2)

n

∂σ (2)
1 · · · ∂σ (2)

n
...

...

∂n−1σ (2)
1 · · · ∂n−1σ (2)

n


,

ŵ(1) =




σ (1)
1 · · · σ (1)

n

∂σ (1)
1 · · · ∂σ (1)

n
...

...

∂n−2σ (1)
1 · · · ∂n−2σ (1)

n

∂̄nσ̄ (2)
1 · · · ∂̄nσ̄ (2)

n




, ŵ(2) =




σ (2)
1 · · · σ (2)

n

∂σ (2)
1 · · · ∂σ (2)

n
...

...

∂n−2σ (2)
1 · · · ∂n−2σ (2)

n

∂̄nσ̄ (1)
1 · · · ∂̄nσ̄ (1)

n




,

(26)

where σ (i)
j = exp(λ jz− iλ 2

j t) f i
j(z−2iλ jt,t), λ j ∈ C, σ̄ (i)

j is its conjugate complex number, f i
j is a linear combina-

tion of the polynomials sn(z,t) (n = 1,2, · · ·), which can be constructed from exp(kz− ik 2t) = ∑n≥0 sn(z, t)kn/n!.
We use the convenient notation ∂ = ∂/∂z, ∂̄ = ∂/∂z̄ with z = x+ iy, z̄ = x− iy.

As in [30], we use the notation(
n|m(1)

1 , · · · ,m(1)
n ;m(2)

1 , · · · ,m(2)
n

)
(27)

to indicate the corresponding family of solutions of (24), where n is the rank of the Wronskian blocks and

m(1)
1 , · · · ,m(1)

n ; m(2)
1 , · · · ,m(2)

n are the leading degrees of the polynomials f (1)
1 , · · · , f (1)

n ; f (2)
1 , · · · , f (2)

n .
Example 1: Taking (1|2;0) in (27), corresponding to f (1) = s2(z, t)+ cs1(z, t), f (2) = 1, the solution of (24)

reads

A =
4iλ1t −2z− c

|(z−2iλ1t)2 −2it + c(z−2iλ1t)|2 −1
exp(λ1z− iλ 2

1 t − λ̄1z̄− iλ̄ 2
1 t),

V = ln
[|(z−2iλ1t)2 −2it + c(z−2iλ1t)|2 −1

]
+ λ1z− iλ 2

1 t + λ̄1z̄+ iλ̄ 2
1 t,

(28)

where z = x+ iy, and λ̄1 is its conjugate complex number.
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Thus in the leading order approximation we obtain the rational solution of the 2D monatomic lattice as

u(t) =
−4

√−2γRe{[(z−2iλ1t)2 −2it + c(z−2iλ1t)][2(z̄+ 2iλ̄1t)+ c̄]}
ρ [|(z−2iλ1t)2 −2it + c(z−2iλ1t)|2 −1]

+
−2

√−2γ(λ1 + λ̄1)
ρ

+

(√
−4
β

4iλ1t −2z− c
|(z−2iλ1t)2 −2it + c(z−2iλ1t)|2 −1

exp(2i[Im(λ1z)−Re(λ 2
1 t)]+ iθl)+ c.c.

)
,

(29)

where z = x+ iy = la−λ t√−2γ + imb√−2κγ , and λ̄1 and c̄ are complex conjugates.

Example 2: Taking (1|3;0) in (27), corresponding to f (1) = s3(z, t), f (2) = 1, the solution of (24) reads

A =
3[−(z−2iλ1t)2 + 2it]exp(λ1z− iλ 2

1 t − λ̄1z̄− iλ̄ 2
1 t)

|(z−2iλ1t)3 −6it(z−2iλ1t)|2 −1
,

V = ln[|(z−2iλ1t)3 −6it(z−2iλ1t)|2 −1]+ λ1z− iλ 2
1 t + λ̄1z̄+ iλ̄ 2

1 t,

(30)

where z = x+ iy, and λ̄1 is its conjugate complex number.
Then in the leading order approximation the displacement of the 2D monatomic lattice has the following form

u(t) =
−4

√−2γRe{[(z−2iλ1t)3 −6it(z−2iλ1t)][3(z̄+ 2iλ̄1t)2 + 6it]}
ρ [|(z−2iλ1t)3 −6it(z−2iλ1t)|2 −1]

+
−2

√−2γ(λ1 + λ̄1)
ρ

+

(√
−4
β

3[−(z−2iλ1t)2 + 2it]
|(z−2iλ1t)3 −6it(z−2iλ1t)|2 −1

exp(2i[Im(λ1z)−Re(λ 2
1 t)]+ iθl)+ c.c.

)
,

(31)

where z = x+ iy = la−λ t√−2γ + imb√−2κγ , and λ̄1 is its conjugate complex number.

4. Conclusion

By using the method of multiple scales combined
with a quasidiscreteness approximation, we investigate
the two-dimensional monatomic lattice with nearest-
neighbor interaction. From the original motion equa-
tion of the 2D lattice we obtain the Davey-Stewartson
II equation, which is relevant in many physical con-
texts and describes slow modulation effects of the com-
plex amplitude. Several direct methods have been pro-
posed to solve the DS-II [26 – 30]. By solving the
DS-II, we get explicit periodic solutions, soliton so-
lutions and rational function solutions, and then the

leading order approximated solutions constructed by
the explicit solutions of the DS-II are obtained as ex-
pressed in (21), (23), (29) and (31), some graphical
representations of which are given in Figs. 2 – 7.
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