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A two-dimensional monatomic lattice with nearest-neighbor interaction is investigated by the
method of multiple scales combined with a quasidiscreteness approximation. The Davey-Stewartson
Il equation (DS-11) is obtained from the original two-dimensional (2D) differential-difference system.
By solving the DS-11, explicit periodic solutions, soliton solutions and rational function solutions are
obtained, and the leading order approximated solutions of the 2D monatomic lattice are constructed

by explicit solutions of the DS-11.
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1. Introduction

In recent decades there has been a great develop-
ment in soliton formation and its application in one-
dimensional (1D) systems. The observation of soliton
modes in energy propagating along a biological mole-
cule chain has attracted more and more interest. New
achievements in studying topological solitons in poly-
acetylene chains and the phenomena of transforma-
tion with the action of an electric field have been ob-
tained [1]. The electric field soliton [2], optical soli-
ton [3], breather [4], and so on are interesting prob-
lems. Since the pioneering work of Fermi, Pasta, and
Ulam [5] and of Zabusky and Kruskal [6] on nonlin-
ear dynamicsin alattice, a great variety of researches
on the dynamical localization in discrete systems has
been stimulated, especially on one-dimensional lat-
tice solitons, which are localized nonlinear excitations
due to the balance between nonlinearity and disper-
sion [7]. The method of multiple scales is an effec-
tive method, and by use of it one can reduce the lattice
system, which is a set of differential-difference equa-
tions and can hardly be solved exactly, to a set of par-
tial differential equations for a slowly changing enve-
lope from which one can get explicit solutions, such
as a nonlinear Schrodinger (NLS) equation [8] and a
Korteweg-de Vries (KdV) equation [9]. Basing on 1D

Fig. 1. 2D monatomic lattice.

nonlinear effects, people have a so made many investi-
gations on soliton equations of two-dimensional (2D)
systems [10—15].

The present paper is devoted to investigate the equa-
tions of nonlinear vibration in a two-dimensiona dis-
crete monatomic lattice with nearest-neighbor interac-
tion, whichisshowninFig. 1, wherea and b arelattice
constants. When higher power terms with weak non-
linear interaction are neglected, the Hamiltonian of the
systemis
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where uj n(t) is the displacement of an atom with
mass M fromitsequilibrium position, and Koy, Kax, Kax
and Kay, Ky, K4y are harmonic, cubic, and biquadratic
force constants in the x- and y-direction, respec-
tively. By using the method of multiple scales [8,16—
19] combined with a quasidiscreteness approxima-
tion [20], the Davey-Stewartson |1 equation (DS-11) is
obtained fromtheoriginal 2D lattice. Theexplicit solu-
tions of the DS-11 are given, and then the leading order
approximated solutions are constructed by the explicit
solutions of DS-I.

The organization of the paper is as follows. In Sec-
tion 2, the (2+1)-dimensional DS-1 is derived from the
original 2D monatomic lattice. Section 3 is devoted to
solvethe DS-11 and obtain the explicit solutionswhich
are used to construct the leading order approximated
solutions of the original 2D lattice. The last section
contains a short conclusion.

2. Asymptotic Expansion and the (2+1)-Dimen-
sional Davey-Stewartson || Equation

According to (1), the nonlinear vibration equation
for uj y, has the form

U m = Jox(U41,m — 2Up m+ U —1.m)
+ Jax[ (Ui 1m— uI,m)2 —(U_gm— Ul.m)z]
+ dax[ (U1 m— uI,m)3 +(U_1m— Ul.m)S]

[
2
+ Joy (Ul mi1 — 2U1 m+ U m-1)
+ Jay (U1 — U m)? — (U m-1— U m)?]
+ dayg[(Umi1 — U m)®+ (Ume1— Ui )],
where Jpx = szxa Jax = %, Jax = % and J2y: szy,
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Jyy = KWW gy = %. In order to include the effects
of the anharmonicity and discreteness of the lattice,
we use the method of multiple scales [8,16—19] and
a quasidiscreteness approximation [20] to obtain the
equations which describe the devel opment of the mod-
ulation of the amplitude in the lowest order of an as-
ymptotic expansion. In this treatment one sets
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where ¢ is a small but finite parameter denotmg
the relative amplitude of the excitations and u

Iml —
(D(&,Mm. 6,7), &, Mmand 7 are“slow” variables, re-

spectively, defined by & = e(la— At), Nm = emb and
7 = £t. They are called multiple scales variables. The
parameter A isto be determined later. The “fast” vari-
able, 6, = kla— wt, represents the phase of the car-
rier wave. Here k and o are the wave number and fre-
quency of the carrier wave, respectively. In term of
these notations, by substituting (3) into (2) and com-
paring the powers of &, one obtainsthe following equa-
tions:
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In order to derive the above eguations, the Taylor
expansion has been used:
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_ a _
where Umjz1 =

uI(,JrL,Iil(élvnmvelilaf)- Umi =
U|(,Jr31.| (&,Mm., 61, 7). We have omitted the arguments for
convenience. Here, in the continuum approximation
the lattice constants a, b and the parameter ¢ are al
small quantities (in Section 3, when giving the graph-
ical representations of some solutions obtained, we
have taken the lattice constant as 0.01 for good pre-
cision), and the higher order dispersive terms are ne-
glected in the calculations.

In the lowest order of € (j = 1) we can get the fol-
lowing linear wave equation:

2
RGN

1 1 1
52 Yimi — Jax (U|(,r21,|+1 - 2U|(,r21,| + ul(.n>1,|—1) =0. (10)
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We can verify that the solution of (10) has the form

Uh =U (&, M, 1)+ P(&, . ) exp(i6))

(11)
+ P(é > Mm, T) exp(_|0| )7
with
ok) =2 JZXsink?a, (12

whereU and P are the real and complex functions, re-
spectively, to be determined later, and P isits conjugate
complex number.

When j = 2in (4), the second-order approximation
equationis

&’ B
atzuImI_JZX(ulm|+1

= 2iw <)L — a"%sm(ka)) % exp(i6) (13)

2 2
20, + U|(,r21.|—1)

— 8iJsin(ka) sin? (k?a) P2exp(2i6)) + c.c.,

where c.c. represents complex conjugate terms. In or-
der to eliminate the secular term, we have

A= adax sin(ka). (14)

Then we can get the valid solution of (13) asfollows:

(15

U|(72r2,,| = Go(&,NMm, T) + G(&, Nim, )exp(|9|)+|J—ctg ( ) Pzexp(zl 6)+ c.c.,

where Gg and G are, respectively, real and complex functionsto be determined in higher-order approximations.
Considering j = 3in (4) and using the results obtained in (11), (12), (14) and (15), we can have

o’ ® @ L0 2,20V 5, U o kao|P?
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+ c.c. + higher harmonics.
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From (16) we find that there are two kinds of secu-
lar terms. The first ones are functions of the low vari-
ables and make that ul( rzﬂ containst explicitly. Remov-
ing these and the exp(i6, ) secular terms, we obtain the
two following equations concerning the envel ope func-
tionsU and P:

0%U . a2 a|P?
&2 EER (17)
oP azp BZP

U 2
5%+ Yag2 ~ Kagz +PP5E +BIPIP=0,

with
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Using the transformation P — /=44, 94 _ S

Be oy
(17) can be transformed into

& y= Nm
ev/=2y'7 T ey/=2xy’
Qu+Qy+4/AZ =0,
iA—%mm—Nﬁ—yQ—qN%:o
with up = 2.

We canfindthat (19) isjust theDS-I1[21—23]. Itisrel-
evantin many different physical contextsand describes
slow modulation effects of acomplex amplitude A, due
to asmall nonlinearity, on a monochromatic wavein a
dispersive medium. It turns out to be integrable viathe
inverse spectral method [24—25]. Severa direct meth-
odsto obtain special solutions of DS-11 have been con-
structed, such as Darboux transformations [26], gauge
transformations [27], o dressing method [28], Wron-
skian scheme [29—-30].

(19)

3. Periodic Solution, Soliton Solution and Rational
Function Solution

This section is devoted to solve the Davey-
Stewartson Il equation, and then the leading order ap-
proximated solutions of the 2D monatomic lattice are
got by explicit solutions of the DS-I1.

Fig. 2. Plot of solution (21) withky =11, = f =0.
3.1. Periodic Solutions

It can be easily verified that (19) has periodic solu-
tions of the form

Q= bo+bysin(kyx+ 11y + O1t)
+ bysin(2kyx+ 2l1y + 201t)
+ bzcos(2kix+ 211y + 201t),

A= exp(i(kox+ loy + Ogt))
-[c+dsin(kix+ 1y + Oat)

+f cos(kix+ l1y+ Ont)],

(20)

where the coefficients satisfy by = —4cd, bg = by =
3 2_12
f =0, by = d2, ky = I, Op = I8N

+koly —lgl1, 0rbg=by =c=0, b, = —2fd, b3—d2—

2d+2d(d?—2)—6d%—2d 2 —|2d
2, kg = +ly, O = K942 )Zd ,O1=

+kol1 —loly.

So, in the leading order approximation we can
obtain the following periodic solution of the 2D
monatomic lattice:

J_T

u(t) = [2b1 cos(kix+ 11y + Ogt)

+ by cos(2kyx + 211y + 204t)
—bssi n(2k1x + 2l 1Y+ 201t)]

+ {\/%[c+ds:n(k1x+lly+0ﬂ> “

+ f cos(kyx+ 11y + Ost)]
exp(i(kox+loy+Oot + 1)) + c.c.}.

Figures 2 and 3 are the plots of the solution (21)
att=2withb, = f =0,a=0.01, k=12, J, = 36,



Z.-F.Li and H.-Y. Ruan - (2+1)-Dimensional Davey-Stewartson |1 Equation 49

Fig. 3. Plot of solution (21) withk; = —l1,bp = f =0.

\]3)(:9, c=1d=15, k0:0.8, |0:1, k1::|:|1:
+1.2. Figures 4 and 5 are the plots of the solution (21)
at=2withb;=c=0,a=001 k= 1%, 3, = 36,
Jx=9,f=15d=15ky=0.8lg=1k; =+l; =
+1.2.

3.2. Soliton Solutions

We find that (19) has the soliton solution
Q = ap+ agtanh(kyx + l1y + O1t)
+ agtanh(kyx + l1y + Ogt)?,
A= exp(i(kox+ loy + Ogt))
- [bo + by tanh(kyx+ Iy + O1t)],

(22)

withag = Zb% —4bgby, a3 = —4bgby, ap = —2b%, ky =

2 12
11, 0p = 8bgb— 4(b3+b2) + 210, 0; = +koly —lols.
S0, intheleading order approximationwe obtain the
displacement of the 2D monatomic lttice as follows:

=N
 pky

u(t)

. [all n(exp(kyx+ l1y+Ogt)? +1)

n 2ay :|
exp(kix+lyy+ Ost)2+ 1

+ [\/%[bo + by tanh(kyx+ 11y + Oqt)]

- exp(i(kox =+ loy+ Ogt + 6))+ c.c.} .

(23)

Figure6istheplot of Qatt = 2 with
kO:87 |0:_97 k1:|12_107
bo=1 b;=2
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Fig. 6. Plot of Q (22) withag =0,y =a = -8, k; =11 =
—10,0, = —170.

fromwhich wefind that it isakink grey soliton.
Figure 7 isthe plot of the solution (23) at t = 2 with

1
a— 001, k:%, In=36, Jax— -9,
kO:87 |0:97 k1:|1:_107
bo=1 bi=2.

3.3. Rational Solutions

We now consider rational solutions of (19). Before
solving them, we make the transformation: Q = Vyy,
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theform

Vaz+ |A? =0,

. (24)
1A — (Azz—i—Ai) — 2A(VZZ—|—VZ7) =0.

According to [29] and [30], the solution of the
DS-1 (24) can be expressed as follows:

WD W@
det (@(2) #Y
A= O w2\’
W
W2 W (25)

WD W
V=lIn (det (\ﬁ(z) R
where w() (i = 1,2) are n x n Wronskian matrices.
W and W@ are also n x n matrices; the "represents

conjugating every ingredient of the corresponding ma-
Z=X+iy, Z= X—iy. Then (19) can be changed into trix, and the forms of the matricesw(l), W(z), w@ and

det

Fig. 7. Plot of solution (23) withky = 15.

W@ are
Gil) . o\ 6£2> . ol?
w® — 80{1) ao.@ ’ W@ — aof) ao.@ ,
a”*%{” - 8"71.0,21) a”*io{2> - a”*io,22>
Gil) . o\ 0{3 . ol? (26)
E)cfi1> e Bor(ﬁ) aaﬁ e Bor@
\7\1(1) = : : s V\V(z) = . . ’
-2 6{1) 26 -2 6{2) v 2g?
5"5{2) o oGP 5"5{1) o gty
Whereoj(i) =exp(Ajz— i),jzt) fJj (z—2iAjt,t), Aj €C, Ej(i) isits conjugate complex number, fJj isalinear combina

tion of the polynomialssn(z,t) (n=1,2,---), which can be constructed from exp(kz— ik?t) = ¥ -0 (2, t)k"/nl.
We use the convenient notation 0 = 9/0z, d = 9/0zwith z= x+iy, Z= x—iy.
Asin[30], we use the notation

(nm?, ks m®, i) (27)

to indicate the corresponding family of solutions of (24), where n is the rank of the Wronskian blocks and
m(ll),m ,m(ql); m(lz),m ,mﬁz) are the leading degrees of thepolynomiaJsfil),~~~ , fé”; fl(z),m , f,@.

Example 1: Taking (1/2;0) in (27), corresponding to f () = s5(z,t) + csy(z 1), £ = 1, the solution of (24)
reads
(2= 207 — 2it + clz— A E =1 TPz~ ALt =z —iAgt), 29)

V =In[|(z—2iMt)? - 2it + o(z— 2iMat)[> — 1] + Maz— A2t + Az +iAt,

A=

wherez = x+1iy, and Zl isits conjugate complex number.
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Thusin the leading order approximation we obtain the rational solution of the 2D monatomic lattice as

) = —4\/——2}/Re{[(z 2iAqt)2 — 2it + c(z— 2iAgt)][2(Z+ 2iAat) + T} . —20=2y(A1 + M)
|(z—2iAt)2 — 2it +c(z— 2iMt) |2 — 1] p
(29)
4izmt—2z—cC . 2 .
(\/ B |(z—2iAt)? — 2it+c(z— 2iAst) 2 — exp(2i[Im(212) — Re(A{1)] +i6r) + C'C'> ’
_ la_At | _imb 7 ~ ;
wherez=x+iy= Ner + T2 and A1 and ¢ are complex conjugates.
Example 2: Taking (1/3;0) in (27), correspondingto f () = s3(zt), (@ = 1, the solution of (24) reads
B[ (z—2iMt)?+ 2it] exp(Az— A2t — MZ—iA2)
((Z— 2iAgt)3 — 6it(z— 2iAgt)|2— ’ (30)

V = In[|(z— 2iAat)® — 6it(z— 2iA4t)|? —

wherez = x+ iy, and )_,1 isits conjugate complex number.

1)+ 2z — A2+ MZ+iAft,

Then in the leading order approximation the displacement of the 2D monatomic lattice has the following form

. —4\/7}/Re{[(z 2iAqt)3 — 6it(z— 2iAat)[3(Z+ 2iAst)2 + 6it]}  —2/—=2(A1+ A1)
®)= (Z— 20413 — 6it(z— 2i2at)]2— 1] N P

(31)

—(z— 2iAgt)? + 2it]
|z 2|)th —6it(z— 2iAqt)|2 —

wherez = x+ iy = '\?—7“;,+ J%,

4. Conclusion

By using the method of multiple scales combined
with a quasi discreteness approximation, we investigate
the two-dimensional monatomic lattice with nearest-
neighbor interaction. From the origina motion equa-
tion of the 2D lattice we obtain the Davey-Stewartson
Il equation, which is relevant in many physical con-
textsand describes slow modul ation effects of the com-
plex amplitude. Several direct methods have been pro-
posed to solve the DS-II [26—30]. By solving the
DS, we get explicit periodic solutions, soliton so-
lutions and rational function solutions, and then the
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